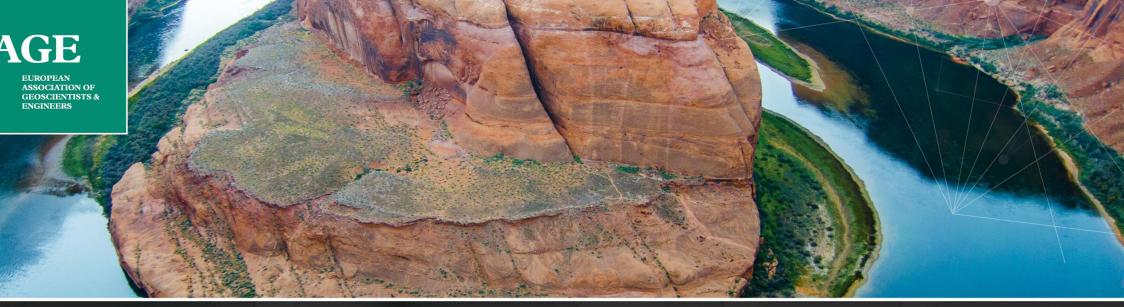


EUROPEAN ASSOCIATION OF GEOSCIENTISTS & ENGINEERS

EAGE Conference on Reservoir Geoscience

3-5 DECEMBER 2018 • KUALA LUMPUR, MALAYSIA

WWW.EAGE.ORG



Elastic Docs As An Automated Information Retrieval Platform For Unstructured Reservoir Data Utilizing a Sequence of Smart Machine Learning Algorithms within a Hybrid Cloud Container

N.M. Hernandez, P.J Lucanas, I. Panganiban, C. Mamador, C.Yu Iraya Energies

3-5 DECEMBER 2018 • KUALA LUMPUR, MALAYSIA

WWW.EAGE.ORG

Outline of Presentation

• Problem Statement

Dealing with Unstructured Reservoir Data

Methodology

- Machine Learning
- Database & Infrastructure

• Results

- Supervised and Unsupervised
- NLP & Reservoir Image Processing
- Metrics
- API Demonstration
- Conclusion

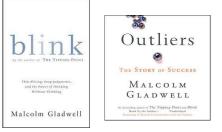
"Where oil is first found is in the minds of men"

-Wallace E. Pratt

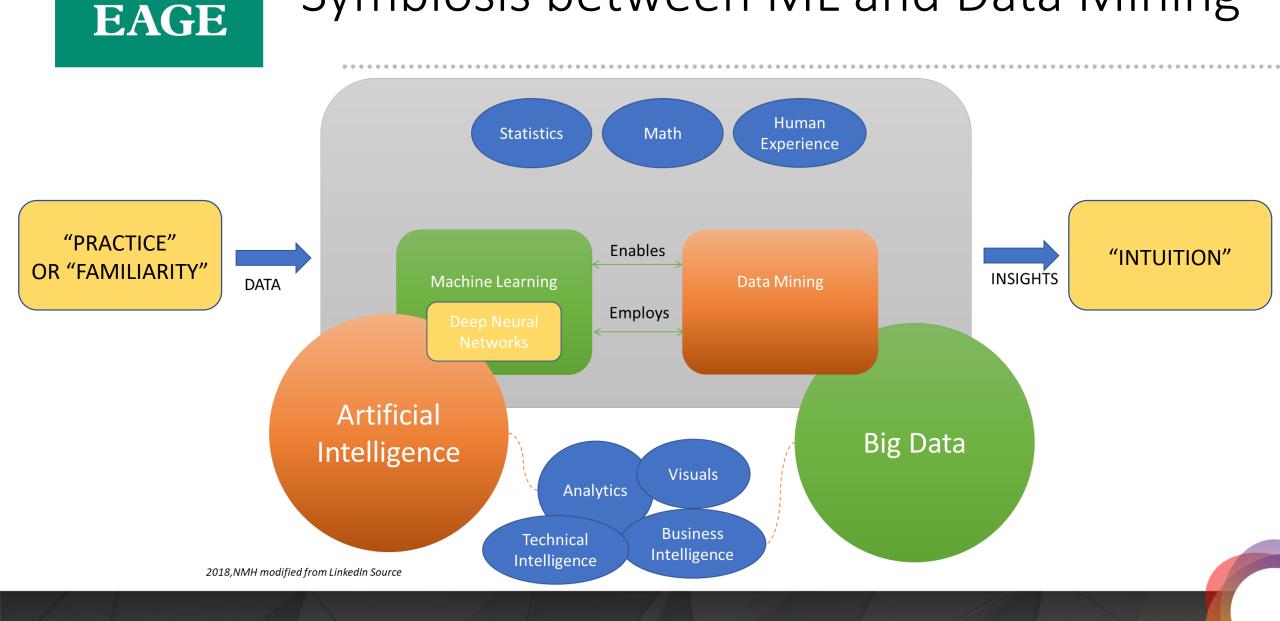
Pioneer Petroleum Geologist (1959)

"Good intuition requires years of practice"

-Malcolm Gladwell Author, Blink

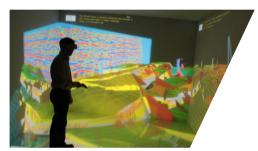


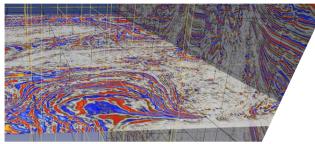
Symbiosis between ML and Data Mining



Problem Statement: ElasticDocs

Highly advanced platforms for well and seismic data





Unstructured documents are inaccessible

Reservoir

Properties

 NUM
 NUM
 NUM
 Operation

 Address
 States
 States

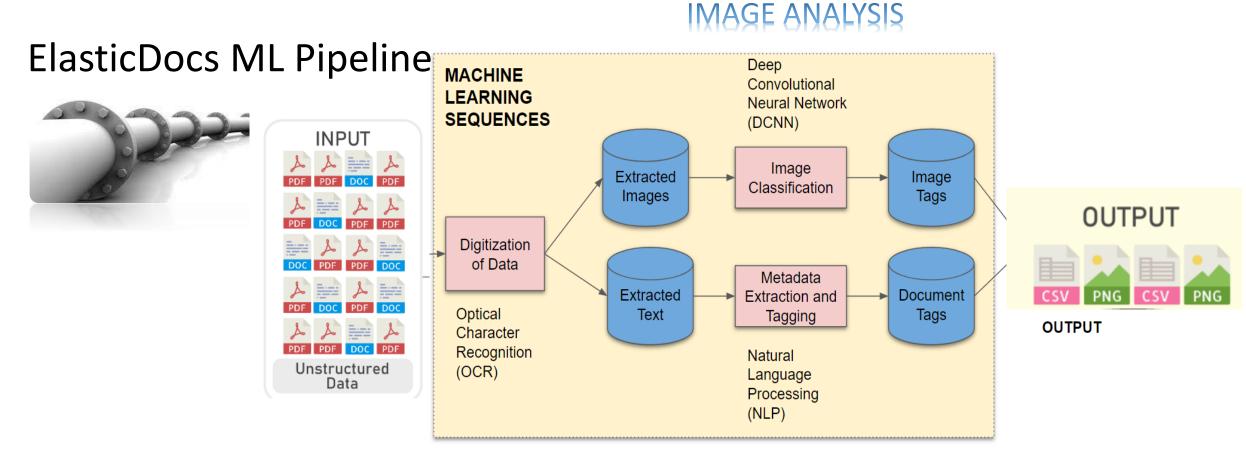
And Alexander Jack Al

Technical Memory is Lost

Using the latest advances in Machine Learning:

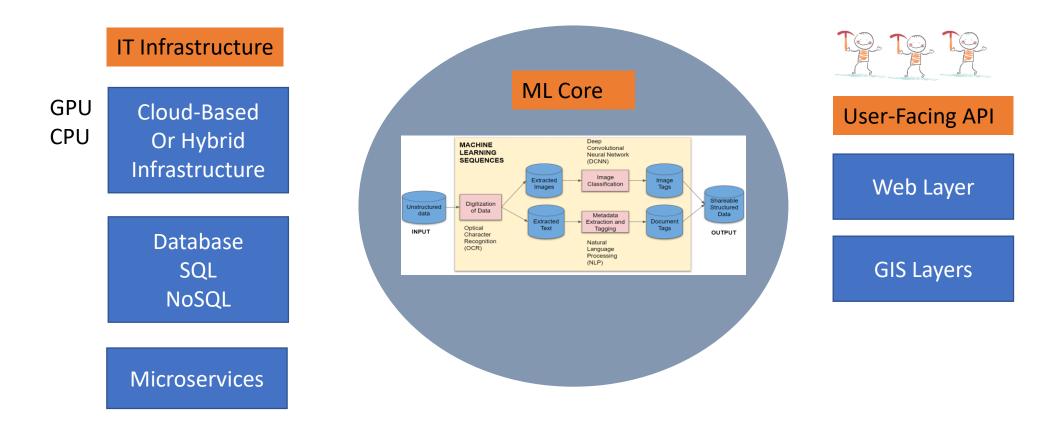
- How to gain reservoir experience leveraging from existing data
- How to maintain or recover corporate memory

Methodology



TEXT ANALYSIS

Methodology



CURATED, OPEN SOURCE LIBRARIES

Python, Tensorflow, Leaflet, Elasticsea<u>rch,etc</u>

Natural Language Processing

Named Entity Recognition

Geology Identification

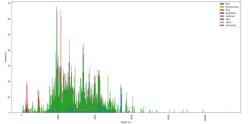
("the glauconitic claystone sample is barren of foraminifera. no definitive environment interpretation is possible.", {'entities':[(4,25,'GEOL')]}),

("massive claystone interbedded with silty claystone and thin argillaceous siltstone", {'entities':[(8, 17, 'GEOL'), (35, 50, 'GEOL'), (60, 82, 'GEOL')]}),

("chevron australia pty ltd acme 1",{'entities':[]}), (example of no geological entity to be detected)

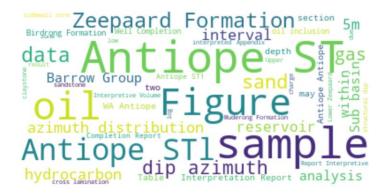
Hydrocarbon show Identification

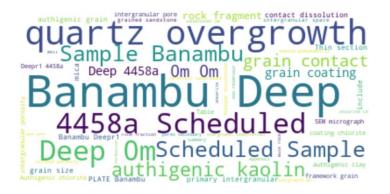
("STAIN N~D FLUORESCENCE 3699-3709m This interval constitutes the upper part of the ",{'entities':[(23, 27, 'DEPTH'), (28, 32, 'DEPTH')]})



Natural Language Processing

Word Clouds





Unsupervised Clustering with Topic Models

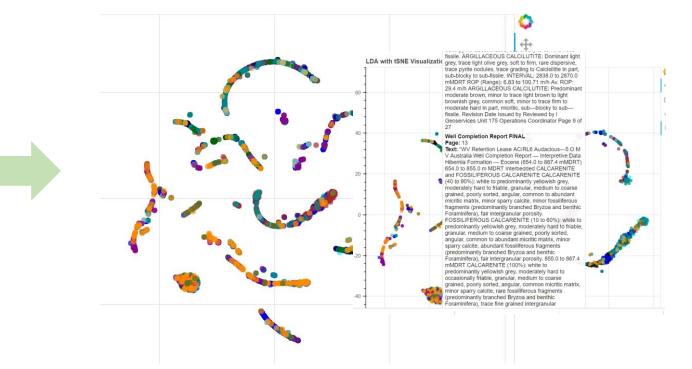


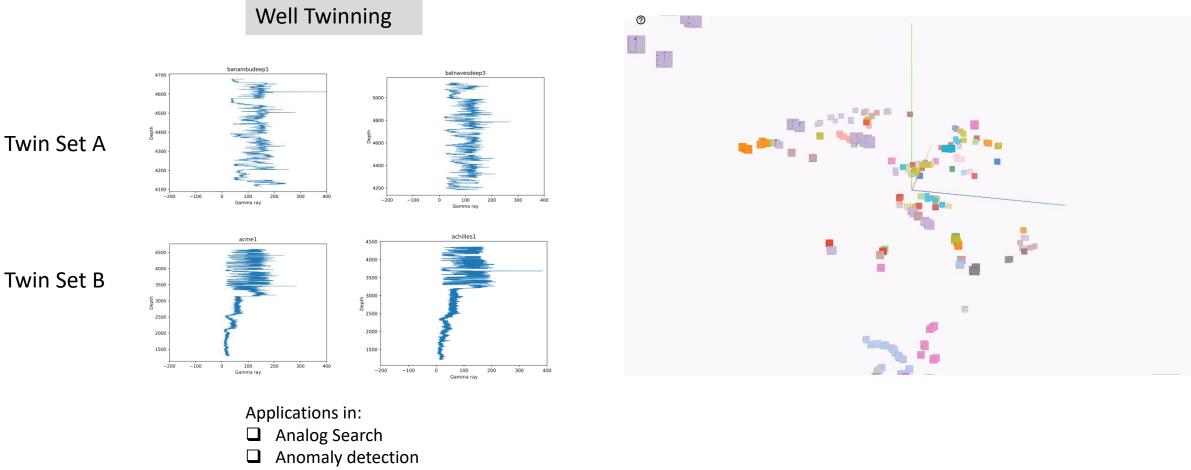
Image Recognition

Multi-Format Images

	Precision	Recall	F1-score
Мар	0.83	0.96	0.89
Seismic	1.00	0.95	0.97
Core	0.89	0.98	0.94
SEM	0.95	0.93	0.94
Others	0.91	0.73	0.81

A | Points: 5424 | Dimension: 4096 A 0 12.111

Image Recognition

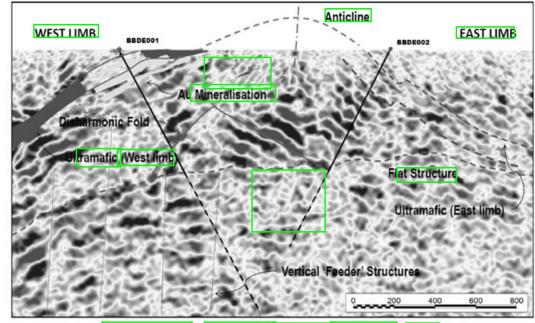


Quality control

Scene Detection

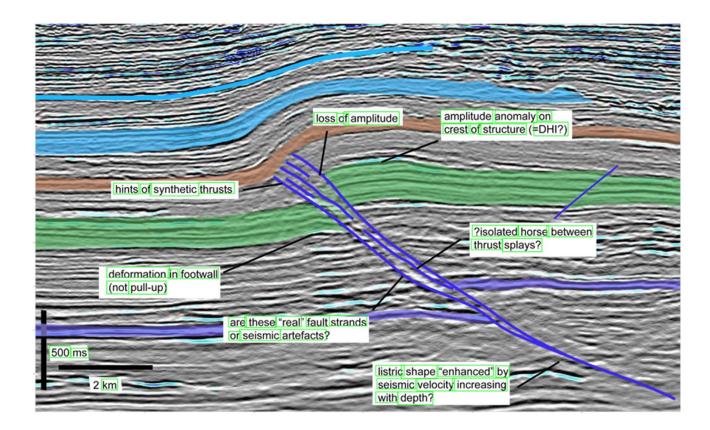
Train Station Signage

Seismic Signage



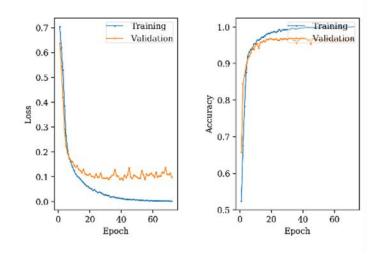
Cross-section on Seismic Line Showing Planned Drill Holes

Scene Detection



thrust	km
on	(not
or	footwall
listric	velocity
'with	"real
ms	'horse
are	by
crest	fault
500	splays?
'increasing	deformation
"anhanced"	?isolated
of	structure
<trands< td=""><td>> shape</td></trands<>	> shape
loss	'amplitude
seismic	depth?
seismic	pull-up)
f amplitude	of
between	in
artefacts'	of
these	'synthetic
hints	=DHI?)
thrusts	
anomaly	

Metrics



Training Loss

Accuracy

- Precision: proportion of positive identification is correct

 $Precision = \frac{T.P.}{T.P.+F.P.}$

- Recall: proportion of actual positives is correct

$$Recall = \frac{T.P.}{T.P.+F.N.}$$

- F1 score: harmonic mean of precision and recall

 $F1 \ score = \frac{2(precision * recall)}{precision + recall}$

Precision and Recall

Metrics

ML Application	Task	Speed
OCR	Text Extraction only, excluding Image Classification	150,000 pages 13 hrs
	Text Extraction and Image Extraction	4,542 pages 6.31 GB 25 Final Well Reports 10 hrs
NLP	Lithology / Geology Indicator Frequency Analysis (i.e Carbonates, Sandstone, etc)	4 hours
	Well Cataloguing	1,500+ input las files 66, 515 curves identified 5,681 top log curves (cali, gr, neu, por) 2 hrs 33.66 min
DCNN	Imag Classification	2,598 tagged images input 16% Tables 6% Figures 19% Map 24% Charts 33% Noise 20-30 mins during training <s after="" training<br="">Currently includes 8 classes: thin section SEM, seismic, stratigraphic</s>
		chart, cores, map and general classes such as chart, figure, table

Tying it all together with an API

ElasticDocs

- ElasticSearch
- Geolocation
- Metadata extraction
- AutoImage Recognition

Supports geoscientists'

- Knowledge
- Intuition
- Experience

through accessible, verifiable big data

	O iray	a ocs	
Email			
Em			
Passw			
	LOG IN		
	Forgot password?		

Conclusion

Dealing with huge amount of unstructured reservoir dataset is made more effective in ElasticDocs by:

- Curation and thorough investigation of appropriate machine learning algorithms
- Creating both structured and non-structured database to host and properly standardize reservoir data as input to machine learning algorithm
- Apply appropriate compute infrastructure, leveraging on availability of compute resources, either with on-prem or cloud
- Design a user-friendly API that all geoscientists can access and analyze their own data

There is huge potential in application of machine learning, and we are barely scratching the surface

- complex networks
- Increasing granularity in object identification