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“Where oil is first found is in the minds of men”
-Wallace E. Pratt

Pioneer Petroleum Geologist (1959)

“Good intuition requires years of practice”
-Malcolm Gladwell
Author, Blink
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Symbiosis between ML and Data Mining

Human
Experience

Enables
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ERLGSE  Problem Statement: ElasticDocs

Highly advanced platforms Unstructured documents Technical Memory
for well and seismic data are inaccessible is Lost

Reservoir
Properties

Geological
Interpretations




RLE S Problem Statement

Using the latest advances in Machine Learning:

* How to gain reservoir experience leveraging from existing
data

* How to maintain or recover corporate memory
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S C SN Methodology
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SRR Methodology
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EAGE Natural Language Processing

Named Entity Recognition

Geology Identification

("the glauconitic claystone sample is barren of foraminifera. no definitive environment interpretation is
possible." {'entities':[(4,25,'GEOL")1}),

("massive claystone interbedded with silty claystone and thin argillaceous siltstone" {'entities':[(8, 17, 'GEOL'), (35, 50, 'GEOL'), (60,
82, 'GEOL')]}),

("chevron australia pty Itd acme 1",{'entities":[1}), (example of no geological entity to be detected)

Hydrocarbon show ldentification

("STAIN N~D FLUORESCENCE 3699-3709m This interval constitutes the upper part of the ",{'entities':[(23, 27, 'DEPTH'), (28,
32, 'DEPTH")]})




EAGE Natural Language Processing

Word Clouds Unsupervised Clustering
with Topic Models
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7 C P |mage Recognition

Multi-Format Images N | | Points: 5424 | Dimension: 4096
f
Precision Recall F1-score @

Map 0.83 0.96 0.89
Seismic 1.00 0.95 0.97
Core 0.89 0.98 0.94
SEM 0.95 0.93 0.94 =
Others 0.91 0.73 0.81 HQ;.:%\': .




SPC S |mage Recognition

Well Twinning ®
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Applications in:

O Analog Search
O Anomaly detection
O Quality control




Scene Detection
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Seismic Signage

Train Station Signhage

lanned Drill Holeﬂ
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EAGE

Loss

Metrics

Speed
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Training Loss

Accuracy

Precision: proportion of positive identification is correct

. T.P.
Precision = TP IF.P. aahiai | B
Recall: proportion of actual positives is correct 1
T.P.
Recall = ————
Ot ST P.AF.N.

F1 score: harmonic mean of precision and recall

2(precision * recall)
precision + recall

F1 score =

Precision and Recall

Predicted
0 1
TN. | FP.
FN.  TP.




EAGE

Metrics

OCR

NLP

DCNN

Text Extraction only, excluding Image
Classification

Text Extraction and Image Extraction

Lithology / Geology Indicator
Frequency Analysis
(i.e Carbonates, Sandstone, etc )

Well Cataloguing

Imag Classification

150,000 pages
13 hrs

4,542 pages

6.31 GB

25 Final Well Reports
10 hrs

4 hours

1,500+ input las files

66, 515 curves identified

5,681 top log curves (cali, gr, neu, por..)
2 hrs 33.66 min

2,598 tagged images input
16% Tables

6% Figures

19% Map

24% Charts

33% Noise

20-30 mins during training
<s after training

Currently includes 8 classes: thin section SEM, seismic, stratigraphic
chart, cores, map and general classes such as chart, figure, table



Tying it all together with an API

ElasticDocs

e ElasticSearch
* Geolocation ‘ ) Va

e Metadata extraction

* Autolmage e
Recognition
Supports

geoscientists’

* Knowledge
* Intuition
* Experience

through accessible,
verifiable big data




RGP Conclusion

Dealing with huge amount of unstructured reservoir dataset is made more effective in ElasticDocs by:

e Curation and thorough investigation of appropriate machine learning algorithms

* Creating both structured and non-structured database to host and properly standardize reservoir
data as input to machine learning algorithm

* Apply appropriate compute infrastructure, leveraging on availability of compute resources, either
with on-prem or cloud

* Design a user-friendly API that all geoscientists can access and analyze their own data

There is huge potential in application of machine learning, and we are barely scratching the surface

* complex networks
* Increasing granularity in object identification




