

Machine Learning:

Going Beyond the Hype and Making it Work for Earth Science

Nina Marie Hernandez March 2018 Manila, Philippines

www.irayaenergies.com

Outlines

Making AI Work for Earth Science

How to Build an Al Project

Al & ML - What is it?

Arthur Samuel (1959) on **Machine Learning**:

The field of study that gives computers the ability to learn without being explicitly programmed.

Al explosion in 2018

Nature as an inspiration

Artificial neural networks (ANN) mimic neurons in a brain

- Layers of nodes with weighted connections between layers
- Information through network changes its structure – it learns

Architectural Principles of DNN

- Features : measurable property or characteristic of a phenomenon being observed
- Layers: information are passed from one layer to the other
- Activation Function: mathematical functions that act as filter
- Loss Function: define the difference between the predicted and actual features
- Optimization Algorithms: algorithms that minimize the loss functions or errors in the modeling
- Hyperparameters: adjustable parameters, such as number of layers, learning rate that can influence the effectivity a of neural network

Deep Learning Neural Network

Further Readings: Coursera Machine Learning, by Prof. Andrew Ng

- Show different input values and compute error
- Adjust weights in direction where error is minimized (along gradient)
- Eventually reach minimum value

Types of Neural Network

Convolutional Neural Nets

Recurrent / Recursive Neural Nets

Reinforced Neural Nets

IMAGE CLASSIFICATION and FEATURE DETECTION

TEMPORAL BEHAVIOUR MODELING AUDIO, TEXT NATURAL LANGUAGE PROCESSING

PAVLOVIAN CONDITIONING

Deep learning has found many applications in image processing

- Facebook's DeepFace for facial verification
- DNN with 9 layers
- Trained using millions of images uploaded by users

Accuracy reaching 97.35%

What do geoscientists do on a daily basis? We make (image) files

EARTH PROBLEMS

Making AI work for Earth Science

Use AI to (classify, predict, learn from) archived, historical megadata

Optimize efficiency during exploration and early development phase

Learn Effectively

10 vs 1,000 wells

20 vs 2,000 seismic lines

Yet-to-Find becomes Easy-to-Find

Making AI work for Earth Science

Iraya Use Cases of Al

- Use Case # 1 : Data Mining
- Use Case # 2: Well Twinning
- Use Case # 3 : Clustering
- Use Case # 4: Deep Resolution

Use Case #1: Data Mining

Problem Definition:

Extract information from a unstructured dataset

Standard Solution:

Download data, manually read metadata and load in a spreadsheet

Machine Learning Solution:

Apply mining robots, elastic search, natural language processing, optical character recognition to reduce timeframe by a factor of 100.

Harvesting

Transform

Enhance

Sort

Harvesting

Transform

Enhance

Sort

Data Mining

LAS DATA IN DIFFERENT FORMAT1,595 files2 hrs 33.66 mins of Data Mining

Identified: 66,515 curves **5,681 most used (10% of data)**

90% of DATA REMAINS TO BE TAPPED

Use Case #2: Well Twinning

Problem Definition:

Find analog wells of a wildcat exploration area

Standard Solution:

Find the nearest 1 or 2 wells in the nearest field (highly risky, does not capture all variabilities)

Machine Learning Solution:

Leverage on big volume dataset to find geological analogs and de-risk potential prospect

Automated Clustering of well data using t-SNE

<u>1</u>522

1

- Automated identification of the closest well "twin", without prior geological knowledge
- Applicable in ultra-wildcat area or cross-country analog search

Banambu Deep	▲ Search	.* Label -	
adex 27 abel Banambu Deep	neighbors 🛛 🔵	20	
	distance C	OSINE EUCLIDEAN	
	Nearest points in the	Nearest points in the original space:	
	Banambu Deep	0.930	
	Banambu Deep	0.974	
	Banambu Deep	0.974	
	Banambu Deep	1.009	
	Banambu Deep	1.029	
	Banambu Deep	1.035	
	Banambu Deep	1.037	
	Banambu Deep	1.044	
	Banambu Deep	1.050	
	Banambu Deep	1.058	
	Banambu Deep	1.058	
	Balnaves Deep	1.061	
	Balnaves Deep	1.061	
	Balnaves Deep	1.066	
	Balnaves Deep	1.075	
	Balnaves Deep	1.077	
	Balnaves Deep	1.077	
	Banambu Deep	1.081	
	Banambu Deep	1.083	
	Balnaves Deep	1.083	

400

- Effective in automated identification of the closest genetic "twin" of the well
- Twin can provided valuable information on lithology, production history, drilling risks, etc.

400

- Effective in automated identification of the closest genetic "twin" of the well
- Twin can provided valuable lacksquareinformation on lithology, production history, drilling risks, etc.

Use Case #3: Clustering

• Problem Definition:

Identify surface features from satellite data

Standard Solution:

Manual Interpretation

Machine Learning Solution:

Unsupervised classification of multiple extracted features

Coherence

For more details, contact: info@irayaenergies.com

Use Case #4: Resolution Enhancement

• Problem Definition:

Increase seismic image Quality in Vintage Seismic acquisitions for better interpretation

Standard Solution:

Traditional Seismic Processing + Stochastic Static Modeling

Machine Learning Solution:

Model-based residual processing using deep convolutional neural network

Iraya Machine Learned (ML) broadband enhancement – Methodology

Architecture

Cascaded architecture using Adam optimizer, dropout 75% and transfer learning

Training

Epochs of over 120,000+, global 2D seismic examples, 1 month per training

Inference 10minutes

Iraya Machine Learned (ML) broadband enhancement – Training

Input

Original

ML enhanced output

ML enhanced output

Let's assume...

We have a powerpoint with somewhere a seismic image

And why not <u>enhance it</u> at the same time

Fully automatic - AI driven

<u>it</u>into .segy

Conclusion:

How to build an AI project

Conclusion

D2V Approach

✓ Define Problem
✓ Define Data
✓ Train
✓ Test
✓ Validate

Classification: Supervised vs Unsupervised Prediction: Regression

Available : Check quality, quantity Not Available: Find other sources? Public data, etc.

Thank you!

To build AI experiments or participate in beta test, you may contact:

info@irayaenergies.com or nmh@irayaenergies.com